Home
Commutative Groupoid
We call
(
A
,
1
,
*
)
, a Commutative Groupoid where
Sets
A
Functions
1
:
(
)
→
A
*
:
A
×
A
→
A
Properties
Associative
:
∀
x
∈
A
,
y
∈
A
,
z
∈
A
,
(
x
*
y
)
*
z
=
x
*
(
y
*
z
)
Identity
:
∀
x
∈
A
,
x
*
1
=
x
Cancellative
:
∀
x
∈
A
,
y
∈
A
,
z
∈
A
,
z
*
x
=
z
*
y
→
x
=
y
∨
y
*
z
=
y
*
z
→
x
=
y
Commutative
:
∀
x
∈
A
,
y
∈
A
,
x
*
y
=
y
*
x
Closure (constant)
:
1
∈
A
Similar Structures
Stronger Forms
The Commutative Groupoid can be extended into an
Abelian Group
Commutative Groupoid
Abelian Group
*
:
A
×
A
→
A
*
:
A
×
A
→
A
1
:
(
)
→
A
1
:
(
)
→
A
A
A
Additional Properties
*
Closure
Weaker Forms
The Commutative Groupoid can be reduced into a
Groupoid
Commutative Groupoid
Groupoid
*
:
A
×
A
→
A
*
:
A
×
A
→
A
1
:
(
)
→
A
1
:
(
)
→
A
A
A
Additional Properties
*
Commutative